Article ID Journal Published Year Pages File Type
8919460 Econometrics and Statistics 2018 49 Pages PDF
Abstract
Many time series exhibit changes both in level and in variability. Generally, it is more important to detect a change in the level, and changing or smoothly evolving variability can confound existing tests. A framework for testing for shifts in the level of a series which accommodates the possibility of changing variability is developed. The resulting tests are robust both to heteroskedasticity and serial dependence. They rely on a new functional central limit theorem for dependent random variables whose variance can change or trend in a substantial way. This new result is of independent interest as it can be applied in many inferential contexts applicable to time series. Its application to change point tests relies on a new approach which utilizes Karhunen-Loéve expansions of the limit Gaussian processes. After presenting the theory in the most commonly encountered setting of the detection of a change point in the mean, it is shown how it can be extended to linear and nonlinear regression. Finite sample performance is examined by means of a simulation study and an application to yields on US treasury bonds.
Related Topics
Physical Sciences and Engineering Mathematics Statistics and Probability
Authors
, , ,