Article ID Journal Published Year Pages File Type
8941642 Journal of Sound and Vibration 2018 27 Pages PDF
Abstract
As one of the most commonly used nonlinear active noise control (NANC) algorithms, the filtered-s least mean square (FsLMS) algorithm outperforms the conventional filtered-x least mean square (FxLMS) algorithm when the primary path has a quadratic nonlinearity. However, it still suffers from performance degradation under strong interferences. In this paper, two new algorithms, named filtered-s q-least mean p-norm (FsqLMP) and filtered-s q-least mean square (FsqLMS), based on the concept of Jackson's derivative, are proposed. By using new Jackson's derivative method, the proposed algorithms are less sensitive to the interferences in NANC system. Additionally, it is shown that the family of q-least mean square algorithms are special cases of the proposed FsqLMP algorithm. To further improve performance of the FsqLMS algorithm and solve the parameter selection problem, a time varying q scheme is developed. Simulation studies indicate that the proposed algorithms provide superior performance in various noise environments as compared to the existing algorithms.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, , ,