Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8942684 | Journal of Chromatography B | 2018 | 8 Pages |
Abstract
Endogenous cholecystokinin tetrapeptide (CCK-4, Trp-Met-Asp-Phe-NH2) is a fragment derived from a larger peptide hormone, cholecystokinin (or gastrin). As a panicogenic agent, CCK-4 is commonly used in clinic settings to induce panic attacks for the study of new anxiolytic drugs. However, few studies on CCK-4 metabolism have been published to date. In the present study, we investigate the metabolism of CCK-4 in liver microsomes of human (HLM), Rhesus Monkey (RMLM), Sprague-Dawley rat (RLM) and CD1 mouse (MLM) using ultra-high performance liquid chromatography coupled to a high resolution mass spetrometer. Ten metabolites, inlcuding tryptophan (M1), tryptophan amide (M2), hydroxy metabolites (M3-M5), truncated peptides (M6-M9), and CCK-4 acid (M10), were identified and 8 of them were reported for the first time. The metabolic pattern of CCK-4 in HLM was distinctly different from these in RMLM, RLM, and MLM. M2 and M9 were the major metabolites in HLM and accounted for 19.8% and 13.4% of initial CCK-4, respectively. In contrast, M2 was the major metabolite in RMLM and accounted for 41.4%, whereas M6 was the major metabolite in RLM and account for 39.1%. Three major metabolites M2, M7 and M8 in MLM accounted for 22.6%, 17.9% and 17.8% of initial CCK-4, respectively. Chemical inhibition experiment showed that aminopeptidase and/or endopeptidase hydrolysis were the major metabolic pathways in human to generate these metabolites. We further showed that cytochrome P450 were also involved in the metabolism of CCK-4 via hydroxylation, but to a less extend. These findings provide valuable information for the metabolic processes of CCK-4 among various species and an important reference basis for its safety evaluation and rational clinical application.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Li Kong, Frederic J. Berg,