Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8943222 | Materials Characterization | 2018 | 9 Pages |
Abstract
Generation and healing of pores in metals under loading or during processing have long been important research topics, and their mechanisms are still debatable. In recent years, unexpected percolating networks of pores acting as ultra-fast diffusion paths were found in ultrafine-grained metals processed by severe plastic deformation. Herein, we conducted a systematic study of the mechanisms of generation and healing of pores in ultrahigh-purity copper (99.9995â¯wt%) during high-pressure torsion (HPT). In addition to a solid Cu disk, the disk with holes that were drilled before processing, resulting in nominal initial porosity of 4.48%, was processed by HPT. After HPT, the percolating porosities of 0.07â¯Â±â¯0.01% and 0.04â¯Â±â¯0.01% were found in the solid disk, and in the disk with pre-fabricated holes, respectively. Thus, higher initial porosity resulted in lower percolating porosity in the HPT-processed disk. Systemic characterization using scanning electron microscopy revealed that in both cases shear bands and ultra-fine grains are located in the regions with induced and healed pores. We discussed the mechanisms of porosity evolution in both cases. In the end, to verify the possibility of pores nucleation and growth by vacancy agglomeration, vacancy diffusivity during HPT processing was estimated. This work sheds a new light on the mechanisms of pores nucleation and evolution during severe plastic deformation.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Yuanshen Qi, Anna Kosinova, Askar R. Kilmametov, Boris B. Straumal, Eugen Rabkin,