Article ID Journal Published Year Pages File Type
8943845 Cancer Letters 2018 41 Pages PDF
Abstract
Chemoresistance blunts the effect of Temozolomide (TMZ) in the treatment of glioblastoma multiforme (GBM). Whether exosomal transfer of miRNAs derived from TMZ-resistant GBM cells could confer TMZ resistance remains to be determined. qPCR was used to determine miR-151a expression in two TMZ-resistant GBM cell lines. The direct targets of miR-151a were identified by microarray assays, bioinformatics and further RNA chromatin immunoprecipitation (RNA-ChIP) assay. We characterized exosomes from TMZ-resistant cell lines, serum and cerebrospinal fluid (CSF) and determined the effect of exosomes from TMZ-resistant cells on recipient GBM cells. miR-151a loss drove the acquisition of TMZ resistance. Restored miR-151a expression sensitized TMZ-resistant GBM cells via inhibiting XRCC4-mediated DNA repair. TMZ-resistant GBM cells conferred TMZ chemoresistance to recipient TMZ-sensitive cells in an exosomal miR-151a loss-dependent manner. Restoration of exosomal miR-151a from donor TMZ-resistant cells abolished the chemoresistance dissemination that was directed by donor TMZ-resistant cells. CSF-derived exosomes contained miRNA signatures reflective of the underlying chemoresistant status of GBMs in terms of miR-151a expression levels. Exosomal miR-151a is not only essentially a less-invasive 'liquid biopsy' that might predict chemotherapy response, but also represents a promising therapeutic target for therapy-refractory GBMs.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cancer Research
Authors
, , , , , , , , , , ,