Article ID Journal Published Year Pages File Type
8947729 Composites Part B: Engineering 2019 5 Pages PDF
Abstract
In this work, a systematic study of temperature dependent TE properties of cuprous delafossite materials, CuAlO2, is reported. The optimization of the TE properties has been realized by controlling nanostructure size around 80 nm CuAlO2 powder was prepared using a solid-state synthesis method at ∼1373 K in nitrogen/air atmosphere. The nanostructure size was controlled by a high energy ball milling process. Reducing the particle size of nanostructured bulk materials decouples interdependent electron and phonon transport and results in a lattice thermal conductivity decrease without deteriorating electrical conductivity. The high effective mass plays a dominant role in the high Seebeck coefficient and low electrical conductivity. The power factor reached ∼0.78 × 10−5 W/mK2 at 780 K. Temperature dependent TE properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity are analyzed. The processing-structure-property correlation of these materials are discussed.
Related Topics
Physical Sciences and Engineering Engineering Engineering (General)
Authors
, , , , , , ,