Article ID Journal Published Year Pages File Type
8948435 Ceramics International 2018 24 Pages PDF
Abstract
MXenes, an emerging family of two-dimensional materials, were promising electrode materials due to their excellent electronic conductivity and hydrophilicity. MXenes exhibit extraordinary rate performance and cycling stability when serving as the anode materials for Li-ion batteries, but they have relatively low capacities. We thus prepared Ti3C2Tx/TiO2 composites using a simple route to coat TiO2 nanoparticles onto the delaminated few-layered MXenes, which functioned as spacers in the composite to suppress the restacking of MXene layers. The sample demonstrated excellent performance in the galvanostatic charge-discharge test, where a reversible capacity of 143 mA h g−1 could still be maintained after 200 cycles at 0.5 A g−1 and a distinct plateau region could be clearly observed in the charge-discharge profiles. Density Theory Function calculation revealed that the hybridization of few-layered MXene was able to improve the structural stability of the composite during the insertion/de-insertion of Li atoms.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , , , , ,