Article ID Journal Published Year Pages File Type
8948466 Ceramics International 2018 5 Pages PDF
Abstract
Microstructural evolution and densification behavior of porous kaolin-based mullite ceramic added with MoO3 were investigated. The results indicated that MoO3 addition not only lowered the secondary mullitization temperature to below 950 °C, but also facilitated effectively the anisotropic growth of mullite grains. Fine mullite whiskers grew and interlocked with one another in the pre-existing pore regions, in-situ forming a stiff 3D skeleton structure of mullite whiskers, which arrested further densification of the sample. On the other hand, due to the great capillary attraction of small pores, the liquid phase tended to spread over small grains, which favored the growth from small mullite grains into whiskers at the expense of the liquid phase. Consequently, competitive mechanisms of sintering and crystal growth of mullite functioned, which further limited the sample densification. As a result, the total linear shrinkage of the sample added with MoO3 after firing at 1400 °C was only − 2.75%, and its porosity was retained at as high as 67%.
Related Topics
Physical Sciences and Engineering Materials Science Ceramics and Composites
Authors
, , , ,