Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8949168 | Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease | 2018 | 37 Pages |
Abstract
A host of pathogenic factors induce acute kidney injury (AKI) leading to insufficiencies of renal function. In the present study we evaluated the role of myocardin-related transcription factor A (MRTF-A) in the pathogenesis of AKI. We report that systemic deletion of MRTF-A or inhibition of MRTF-A activity with CCG-1423 significantly attenuated AKI in mice induced by either ischemia-reperfusion or LPS injection. Of note, MRTF-A deficiency or suppression resulted in diminished renal ROS production in AKI models with down-regulation of NAPDH oxdiase 1 (NOX1) and NOX4 expression. In cultured macrophages, MRTF-A promoted NOX1 transcription in response to either hypoxia-reoxygenation or LPS treatment. Interestingly, macrophage-specific MRTF-A deletion ameliorated AKI in mice. Mechanistic analyses revealed that MRTF-A played a role in regulating histone H4K16 acetylation surrounding the NOX gene promoters by interacting with the acetyltransferase MYST1. MYST1 depletion repressed NOX transcription in macrophages. Finally, administration of a MYST1 inhibitor MG149 alleviated AKI in mice. Therefore, we data illustrate a novel epigenetic pathway that controls ROS production in macrophages contributing to AKI. Targeting the MRTF-A-MYST1-NOX axis may yield novel therapeutic strategies to combat AKI.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Ageing
Authors
Li Liu, Xiaoyan Wu, Huihui Xu, Liming Yu, Xinjian Zhang, Luyang Li, Jianliang Jin, Tao Zhang, Yong Xu,