Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8954100 | International Journal of Heat and Mass Transfer | 2019 | 8 Pages |
Abstract
The process of nucleation and unsteady-state growth of spherical crystals in a supersaturated solution is considered with allowance for the Weber-Volmer-Frenkel-Zel'dovich and Meirs kinetic mechanisms. The first two corrections to the steady-state growth rate of spherical crystals are found analytically as the solution of the moving boundary problem. On the basis of this solution, we formulate and solve the integro-differential model consisting of the Fokker-Planck type equation for the particle-size distribution function and of the balance equation for the system supersaturation. The distribution function dependent on the nucleation kinetics is found as a functional of the supersaturation. The integro-differential equation for the system supersaturation is solved by means of the saddle-point method. As a result, a complete analytical solution of the problem of nucleation and nonstationary evolution of a polydisperse ensemble of crystals in a metastable medium is constructed in a parametric form. How to use the obtained solutions for supercooled liquids is discussed.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Fluid Flow and Transfer Processes
Authors
D.V. Alexandrov, I.G. Nizovtseva, I.V. Alexandrova,