Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8955418 | Journal of Materials Science & Technology | 2018 | 8 Pages |
Abstract
A novel mussel-inspired adhesive polymer (PHEA-DOPA) containing the 3,4-dihydroxyphenylalanine (DOPA) functional group based on polyaspartamide derivatives was synthesized. The corrosion protection of the waterborne epoxy coatings containing the adhesive polymers was investigated by electrochemical impedance spectroscopy (EIS). The results indicated that the PHEA-DOPA could improve the corrosion resistance of the waterborne epoxy coating. The corrosion products were also analyzed by Raman microspectroscopy (RM), indicating the formation of the insoluble DOPA-Fe complexes on the carbon steel surface. These complexes simultaneously acting as a passivating layer, can inhibit the process of corrosion at the metal-solution interface. The differential scanning calorimeter (DSC) measurement indicated that PHEA-DOPA can increase the crosslinking density of coating. The effect of O2 on the protective mechanism of the PHEA-DOPA coating in a 3.5% NaCl solution was also evaluated by EIS. The results indicated that the barrier effect was significantly improved under aerated conditions because DOPA was oxidized to DOPA-quinone (Dq) by O2, which triggered the reaction with Fe ions that were released from the surface of the carbon steel. This led to more compact coatings.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Chemistry
Authors
Mingliang Yang, Jianhua Wu, Daqing Fang, Bo Li, Yang Yang,