Article ID Journal Published Year Pages File Type
8979712 International Journal for Parasitology 2005 10 Pages PDF
Abstract
We have developed an Entamoeba histolytica genomic DNA microarray and used it to develop a transcriptional profile of 1,971 E. histolytica (HM-1:IMSS) genes. The arrays accurately detected message abundance and 31-47% of amebic genes were expressed under standard tissue culture conditions (levels detectable by Northern blot analysis or RT-PCR respectively). Genes expressed at high levels (∼2% of total) included actin (8.m00351), and ribosomal genes (20.m00312). Moderately expressed genes (∼14% of total) included cysteine proteinase (191.m00117), profilin (156.m00098), and an Argonaute family member (11.m00378). Genes with low-level expression (∼15% of total) included Ariel1 (160.m00087). Genes with very low expression (∼16% of total) and those not expressed (∼52% of total) included encystation-specific genes such as Jacob cyst wall glycoprotein (33.m00261), chitin synthase (3.m00544), and chitinase (22.m00311). Transcriptional modulation could be detected using the arrays with 17% of genes upregulated at least two-fold in response to heat shock. These included heat shock proteins (119.m00119 and 279.m00091), cyst wall glycoprotein Jacob (33.m00261), and ubiquitin-associated proteins (16.m00343; 195.m00092). Using Caco-2 cells to model the host-parasite interaction, we verified that host cell killing was dependent on live ameba. However, surprisingly these events did not appear to induce major transcriptional changes in the parasites.
Related Topics
Life Sciences Immunology and Microbiology Parasitology
Authors
, , ,