Article ID Journal Published Year Pages File Type
8998408 Neuropharmacology 2005 12 Pages PDF
Abstract
The organophosphate insecticide mevinphos (Mev) acts on the rostral ventrolateral medulla (RVLM), where sympathetic vasomotor tone originates, to elicit phasic cardiovascular responses via nitric oxide (NO) generated by NO synthase (NOS) I and II. We evaluated the contribution of soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) cascade and peroxynitrite in this process. PKG expression in ventrolateral medulla of Sprague-Dawley rats manifested an increase during the sympathoexcitatory phase (Phase I) of cardiovascular responses induced by microinjection of Mev bilaterally into the RVLM that was antagonized by co-administration of 7-nitroindazole or Nω-propyl-l-arginine, two selective NOS I inhibitors or 1-H-[1,2,4]oxadiaolo[4,3-a]quinoxalin-1-one (ODQ), a selective sGC antagonist. Co-microinjection of ODQ or two PKG inhibitors, KT5823 or Rp-8-Br-cGMPS, also blunted the Mev-elicited sympathoexcitatory effects. However, the increase in nitrotyrosine, a marker for peroxynitrite, and the sympathoinhibitory circulatory actions during Phase II Mev intoxication were antagonized by co-administration of S-methylisothiourea, a selective NOS II inhibitor, Mn(III)-tetrakis-(4-benzoic acid) porphyrin, a superoxide dismutase mimetic, 5,10,15,20-tetrakis-N-methyl-4′-pyridyl)-porphyrinato iron (III), a peroxynitrite decomposition catalyst, or l-cysteine, a peroxynitrite scavenger. We conclude that sGC/cGMP/PKG cascade and peroxynitrite formation may participate in Mev-induced phasic cardiovascular responses as signals downstream to NO generated respectively by NOS I and II in the RVLM.
Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , , , , ,