Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9018009 | Toxicology and Applied Pharmacology | 2005 | 12 Pages |
Abstract
In mammals, CYP3A isozymes collectively comprise the largest portion of the liver and small intestinal CYP protein. They are involved in the metabolism of an extensive range of endogenous substrates and xenobiotics and make a significant contribution to the termination of the action of steroid hormones. A full-length cDNA of CYP3A gene, named CYP3A65, was cloned from zebrafish by RT-PCR. The CYP3A65 mRNA was initially transcribed only in the liver and intestine upon hatching of the zebrafish embryos. Like the human CYP3A genes, CYP3A65 transcription in the foregut region was enhanced by treatment of the zebrafish larvae with the steroid dexamethasone and the macrocyclic antibiotic rifampicin. Differing from mammalian CYP3A genes, CYP3A65 transcription was also elicited by 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD) during early larval stages. Repression of AHR2 translation by antisense morpholino oligonucleotides abrogated both of constitutive and TCDD-stimulated CYP3A65 transcription in larval intestine. These findings suggested that the AHR2 signaling pathway plays an essential role in CYP3A65 transcription.
Keywords
Related Topics
Life Sciences
Environmental Science
Health, Toxicology and Mutagenesis
Authors
Hua-Pin Tseng, Tzong-Hsiung Hseu, Donald R. Buhler, Wen-Der Wang, Chin-Hwa Hu,