Article ID Journal Published Year Pages File Type
9018152 Toxicology and Applied Pharmacology 2005 9 Pages PDF
Abstract
In this study, the effects on catalytic activity and mRNA levels of aromatase in primary human mammary fibroblasts were evaluated after exposure to promoter-specific modulators of aromatase expression and methyl sulfonyl polychlorinated biphenyl metabolites (MeSO2-PCBs). A method for fibroblast isolation from primary breast tissue was developed and optimized, and aromatase activity and promoter-specific mRNA levels were assessed in these cells after exposure to test compounds. A 24-h exposure of fibroblasts to dexamethasone (DEX) (1-100 nM) increased aromatase activity to a maximum of 313-fold. DEX also elevated promoter I.4-specific RNA levels. A 24-h exposure of fibroblasts to 3-MeSO2-PCB-132, 4-MeSO2-PCB-132, 4-MeSO2-PCB-91, or 4-MeSO2-PCB-149 (0.1-10 μM) resulted in a concentration-dependent decrease of aromatase activity. Exposure of fibroblasts to MeSO2-PCBs just for the limited duration (6 h) of the catalytic assay caused a concentration-dependent inhibition of aromatase enzyme activity. mRNA levels were not altered by a 24-h MeSO2-PCB exposure nor was cytotoxicity observed. In aromatase-expressing human adrenocortical carcinoma H295R cells, a 24-h exposure to 3-MeSO2-PCB-132, 4-MeSO2-PCB-132, 4-MeSO2-PCB-91, or 4-MeSO2-PCB-149 (0.1-10 μM) also resulted in a concentration-dependent decrease of aromatase activity. Additionally, there were no changes in aromatase mRNA levels after 24-h exposure of H295R cells to MeSO2-PCBs. We conclude that in primary human mammary fibroblasts as well as in H295R cells, aromatase inhibition by MeSO2-PCBs is likely to be due to catalytic inhibition.
Related Topics
Life Sciences Environmental Science Health, Toxicology and Mutagenesis
Authors
, , , , , ,