Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9030026 | Environmental Toxicology and Pharmacology | 2005 | 7 Pages |
Abstract
In a previous paper, we demonstrated that the cytoplasmic level of glutathione-cadmium complex affects cadmium absorption by Saccharomyces cerevisiae, a usual eukaryotic cell model for studies of stress response. Furthermore, it was also observed that the absorption of this non-essential metal seems to be achieved by Zrt1, a zinc transporter of high affinity. Looking a little further into the control mechanism, we have verified that the deficiency in Ace1 impaired cadmium transport significantly. Ace1 is a transcription factor that activates the expression of CUP1, which encodes the S. cerevisiae metallothionein. On the other hand, the deficiency in the transcription factor Yap1 produced a two-fold increase in cadmium uptake. Cells lacking Yap1 showed low levels of glutathione, which could explain their higher capacity of absorbing cadmium. However, the mutant strain Ace1 deficient exhibited considerable amounts of glutathione. By using RT-PCR analysis, we observed that the lack of Yap1 activates the expression of both CUP1 and ZRT1, while the lack of Ace1 inhibited significantly the expression of these genes. Thus, metallothionein seems also to participate in the regulation of cadmium transport by controlling the expression of ZRT1. We propose that, at low levels of Cup1, the cytoplasmic concentration of essential metals, such as zinc, in free form (not complexated), increases, inhibiting ZRT1 expression. In contrast, at high levels of Cup1, the concentration of these metals falls, inducing ZRT1 expression and favoring cadmium absorption. These results confirm the involvement of zinc transport system with cadmium transport.
Related Topics
Life Sciences
Environmental Science
Health, Toxicology and Mutagenesis
Authors
D.S. Gomes, C.J. Riger, M.L.C. Pinto, A.D. Panek, E.C.A. Eleutherio,