Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9032436 | NeuroToxicology | 2005 | 7 Pages |
Abstract
There are several similarities between the behavioral and neurochemical effects of lead (Pb2+) and the cannabinoids. Both Pb2+ exposure and cannabinoid treatment decrease exploratory behavior. Pb2+-induced hyperactivity has been observed in rats and fish. By comparison, cannabinoids increase locomotor activity at higher doses in rats. Moreover, Pb2+ exposure produces learning and memory impairments as do the cannabinoids. Many of the behavioral effects of Pb2+ are thought to be due, in part, to the ability of Pb2+ to either inhibit or mimic the actions of calcium (Ca2+). At low concentrations, Pb2+ enhances basal release of neurotransmitter from presynaptic terminals by increasing intracellular free Ca2+ concentrations. Pb2+ also decreases evoked neurotransmitter release due to blockade of voltage-gated Ca2+ channels. Interestingly, the endocannabinoids (eCBs) including N-arachidonylethanolamine (AEA) and 2-arachidonylglycerol (2-AG) are synthesized in response to increases in intracellular Ca2+ and activate the CB1 receptor that inhibits voltage-gated Ca2+ channels. We tested the hypothesis that waterborne Pb2+ exposure significantly affects whole-brain eCB content in adult male and female fathead minnows (Pimephales promelas). Waterborne Pb2+ exposure (1.0Â ppm) resulted in a time-dependent accumulation of Pb2+ in bone in both males and females. Brain AEA and 2-AG content were significantly greater in females compared to males. Pb2+ exposure increased brain AEA content in males at 7 and 14 days of exposure and increased brain 2-AG content at 14 days. Pb2+ exposure had no effect on either brain AEA or 2-AG content in females at any of the time points examined. As eCBs serve as activity-dependent retrograde inhibitors of neurotransmitter release, the increase in brain eCB content would accentuate Pb2+-induced decreases in evoked neurotransmitter release in male but not female fathead minnows.
Related Topics
Life Sciences
Environmental Science
Health, Toxicology and Mutagenesis
Authors
David J. Rademacher, Daniel N. Weber, Cecilia J. Hillard,