Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9034505 | Toxicology | 2005 | 8 Pages |
Abstract
For understanding a reversible or irreversible harm of β-adrenergic system in lead induced cardiovascular disease (hypertension), We set up animal model to estimate the change of blood pressure and sympathetic nervous system after lead exposure withdrawn in the study. We address three topics in this study: (a) the relationship between withdrawal time of lead exposure and β-adrenergic receptor, plasma catecholamine level, blood pressure, and lead level in heart, aorta, and kidney in lead-induced hypertensive rats after lead exposure stopped; (b) the relationship between blood pressure and β-adrenergic receptor in heart, aorta, and kidney; (c) the estimation of relationship between lead withdrawn and the variation of β-adrenergic system. Wistar rats were chronically fed with 2% lead acetate (experimental group) and water (control group) for 2 months. The rats were divided into 8 groups by withdrawal time of lead exposure stopped. Plasma catecholamine level was measured by high-performance liquid chromatography. Radioligand binding assay was measured by a method that fulfilled strict criteria of β-adrenergic receptor using the ligand [125I]iodocyanopindolol. The levels of lead were determined by electrothermal atomic absorption spectrometry. The results showed that a close relation between reduced lead level and the plasma catecholamine level decreased, aorta β-adrenergic receptor increased, kidney β-adrenergic receptor diminished, heart β-adrenergic receptor increased, and blood pressure dropped after lead exposure withdrawn. The study on the regulation of β-adrenergic system in lead-induced hypertension after lead withdrawn might also provide insight about the nature of this disease state.
Related Topics
Life Sciences
Environmental Science
Health, Toxicology and Mutagenesis
Authors
Huoy-Rou Chang, Der-An Tsao, Hsin-Su Yu, Chi-Kung Ho,