Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9104565 | Bone | 2005 | 11 Pages |
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone, which is secreted from endocrine cells in the small intestine after meal ingestion. GIP has been shown to affect osteoblastic function in vitro; however, the in vivo effects of GIP on bone remodeling remain unclear. In the present study, we investigated the role of GIP in modulating bone turnover, by evaluating serum markers of bone turnover, bone density, bone morphology, and changes in biomechanical bone strength over time (one to five months) in GIP receptor knockout mice (GIPRâ/â mice). The GIPRâ/â mice showed a decreased bone size, lower bone mass, altered bone microarchitecture and biomechanical properties, and altered parameters for bone turnover, especially in bone formation. Moreover, the effects of GIP on bone mass were site-specific and compensatory mechanism developed over time and ameliorated the impact of the loss of GIP signaling on bone mass. Further, GIPRâ/â mice had earlier age-related changes than wild-type mice in body composition, including bone mass, lean body mass, and fat percentage. In summary, our results indicate that GIP has an anabolic effect on bone mass and bone quality and suggests that GIP may be a hormonal link between nutrient ingestion and utilization.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Developmental Biology
Authors
Ding Xie, Hua Cheng, Mark Hamrick, Qing Zhong, Ke-Hong Ding, Daniel Correa, Sandra Williams, Anthony Mulloy, Wendy Bollag, Roni J. Bollag, Royce R. Runner, James C. McPherson, Karl Insogna, Carlos M. Isales,