Article ID Journal Published Year Pages File Type
9113163 General and Comparative Endocrinology 2005 10 Pages PDF
Abstract
Growth hormone (GH) expression is not confined to the pituitary and occurs in many extrapituitary tissues. Here, we describe the presence of GH-like moieties in chicken lymphoid tissues and particularly in the bursa of Fabricius. GH-immunoreactivity (GH-IR), determined by ELISA, was found in thymus, spleen, and in bursa of young chickens, but at concentrations <1% of those in the pituitary gland. Although the GH concentration in the spleen and bursa was approximately 0.82 and 0.23% of that in the pituitary at 9-weeks of age, because of their greater mass, the total GH content in the spleen, bursa, and in thymus were 236, 5.18, and 31.5%, respectively, of that in the pituitary gland. This GH-IR was associated with several proteins of different molecular size, as in the pituitary gland, when analyzed by SDS-PAGE under reducing conditions. While most of the GH-IR in the pituitary was associated with the 26 kDa monomer (40%), the putatively glycosylated 29 kDa variant (16%), the 52 kDa dimer (14%) and the 15 kDa submonomeric isoform (16%), GH-IR in the lymphoid tissues was primarily associated (27-36%) with a 17 kDa moiety, although bands of 14, 26, 29, 32, 37, 40, and 52 kDa were also identified in these tissues. The heterogeneity pattern and relative abundance of bursal GH-IR bands were determined during development between embryonic day 13 (ED13) and 9-weeks of age. The relative proportion of the 17 kDa GH-like band was higher (45-58%) in posthatched birds than in the 15 and 18-day old embryos (21 and 19%, respectively). The 26 kDa isoform was minimally present in embryos (<4% of total GH-IR) but in posthatched chicks it increased to 12-20%. Conversely, while GH-IR of 37, 40, and 45 kDa were abundantly present in embryonic bursa (∼30% at ED13 and ∼52-55% at ED15 and ED18, respectively), in neonatal chicks and juveniles they accounted for less than 5%. These ontogenic changes were comparable to those previously reported for similar GH-IR proteins in the chicken testis during development. In summary, these results demonstrate age-related and tissue-specific changes in the content and composition of GH in immune tissues of the chicken, in which GH is likely to be an autocrine or paracrine regulator.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Endocrinology
Authors
, , , , , , ,