Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9126930 | Gene | 2005 | 10 Pages |
Abstract
The groESL operon of Bartonella bacilliformis, a facultative intracellular, Gram-negative bacterium and etiologic agent of Oroya Fever, was characterized. Sequence analysis revealed an operon containing two genes of 294 (groES) and 1632 nucleotides (groEL) separated by a 55-nt intergenic spacer. The operon is preceded by a 72-nt ORF (ORF1) that encodes a hypothetical protein with homology to a portion of the HrcA repressor for groESL. A divergent fumarate hydratase C (fumC) gene lies further upstream. Deduced amino acid sequences for B. bacilliformis GroEL and GroES revealed a high degree of identity with homologues from other Bartonella and α-Protebacteria. A single transcriptional start site (TSS) was mapped 79 nucleotides upstream of the groES start codon, regardless of incubation temperature. The TSS was located immediately 5â² to a potential controlling inverted repeat of chaperonin expression (CIRCE) element and is preceded by a Ï70-like promoter. The operon is followed by a predicted rho-independent transcriptional terminator. Northern blot analysis indicated that groES and groEL are co-transcribed as a single mRNA of â¼2.4 kb. A 6-h time course analysis by qRT-PCR showed that groEL expression increases 1.3-fold within 30 min of a temperature upshift from 30 to 37 °C, with maximum transcription reached after 60 min (â¼4.3-fold), followed by a steady decrease to background (30 °C) transcription levels by 6 h. Western blot analysis revealed a 1.4- and 1.5-fold increase in GroEL synthesis following a temperature upshift or by inhibiting DNA supercoiling with coumermycin A1, respectively. Functional expression and complementation of temperature-sensitive Escherichia coli groES or groEL mutants with the cloned operon allowed them to grow at otherwise restrictive temperatures.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Genetics
Authors
Julie A. Callison, James M. Battisti, Kate N. Sappington, Laura S. Smitherman, Michael F. Minnick,