Article ID Journal Published Year Pages File Type
9127177 Gene 2005 10 Pages PDF
Abstract
The genetic code of nuclear genes in some ciliates was found to differ from that of other organisms in the assignment of UGA, UAG, and UAA codons, which are normally assigned as stop codons. In some ciliate species, the universal stop codons UAA and UAG instead encode glutamine. In some other ciliates, the universal stop codon UGA appears to be translated as cysteine or tryptophan. Eukaryotic release factor 1 (eRF1) is a key protein in stop codon recognition, thus, the protein is believed to play an important role in the stop codon reassignment in ciliates. We have cloned, sequenced, and analyzed the cDNA of eRF1 from four ciliate species of three different classes: Karyorelictea (Loxodes striatus), Heterotrichea (Blepharisma musculus), and Litostomatea (Didinium nasutum, Dileptus margaritifer). Phylogenetic analysis of these eRF1s supports the hypothesis that the genetic code in ciliates has deviated independently several times from the universal genetic code, and that different ciliate eRF1s may have undergone different processes to change the codon specificity. Using computational methods, we have also suggested areas on the surface of eRF1s that are important for stop codon recognition in ciliate eRF1s.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Genetics
Authors
, , , ,