Article ID Journal Published Year Pages File Type
9137558 Blood Cells, Molecules, and Diseases 2005 5 Pages PDF
Abstract
Hepcidin is a small peptide that acts as a regulator of systemic iron homeostasis. To study some of its functional properties, a synthetic cDNA for the minimal, 20-amino-acid, form of human hepcidin was cloned into different constructs for expression in Escherichia coli. The fusion ferritin-hepcidin produced molecules retaining most of ferritin structural and functional properties, including ferroxidase and iron incorporation activities. However, it showed spectroscopic properties compatible with the presence of iron-sulfur complexes on the hepcidin moiety, which was buried into protein cavity. Similar complexes were reconstituted by in vitro incubation of the iron-free protein with iron and sulfide salts. Two other unrelated fusion products were constructed, which, when expressed in E. coli, formed insoluble aggregates retaining a large proportion of total bacterial iron. Analysis of the solubilized preparations showed them to contain iron-sulfur complexes. We concluded that the cysteine-rich hepcidin acts as an iron-sequestering molecule during expression in E. coli. This may have implications for the biological functions of this key protein of iron metabolism.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Molecular Biology
Authors
, , , , , , , , , ,