Article ID Journal Published Year Pages File Type
9139127 Journal of Structural Biology 2005 6 Pages PDF
Abstract
We have applied wide-angle X-ray scattering to the human cornea in order to quantify the relative number of stromal collagen fibrils directed along the two preferred corneal lamellar directions: superior-inferior and nasal-temporal. The data suggest that, on average, the two directions are populated in equal proportion at the corneal centre. Here, approximately one-third of the fibrils throughout the stromal depth tend to lie within a 45° sector of the superior-inferior meridian, and similarly for the nasal-temporal direction. However, in some eyes we have measured significant differences between the two preferential fibril populations, with some corneas exhibiting as much as 25% more collagen in one direction than the other. Based on these findings, a mechanical model of the normal cornea may be envisaged, whereby the fibril tension in the underlying “background” of isotropically arranged collagen helps to balance the intraocular pressure; while the extra preferentially aligned fibrils take up the additional tensile stress along the superior-inferior and nasal-temporal meridians exerted by the rectus muscles and the orbicularis. It is possible that, through a direct impact on the elastic modulus of the tissue, an imbalance of superior-inferior and nasal-temporal fibrils in some eyes might affect corneal shape.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Molecular Biology
Authors
, , , , ,