Article ID Journal Published Year Pages File Type
9140069 Molecular and Biochemical Parasitology 2005 13 Pages PDF
Abstract
Leishmaniasis affects millions of people worldwide every year. Lack of effective vaccination, co-infection with other dreaded diseases like AIDS and generation of drug resistant strains demand immediate attention into this neglected area of research. The sodium m-arsenite (NaAsO2) resistant Leishmania donovani used in this study is resistant to 20 μM NaAsO2, which shows a 13-fold increase in resistance compared with wild type. Here we report that the arsenite resistant strain of L. donovani promastigotes shows cross-resistance to novobiocin, a catalytic inhibitor of topoisomerase II, with IC50 value of 320 μg ml−1 as compared with 242 μg ml−1 for wild type L. donovani. Leishmanicidal action of novobiocin induces dose- and time-dependent increase in cell death. Treatment with IC50 of novobiocin caused morphological and biochemical changes which lead to induction of cell death exhibiting characteristic features of metazoan apoptosis. Phosphatidylserine externalization, cytochrome C release to cytoplasm, activation of caspases, oligonucleosomal DNA fragmentation and in situ labelling of condensed and fragmented nuclei in both wild type and arsenite resistant L. donovani promastigotes strongly suggest the apoptosis-like mode of cell death. Cross-resistance to novobiocin in arsenite resistant strain has been correlated to over-expression of topoisomerase II and substantiated by differential inhibition of enzyme activity in wild type and arsenite resistant L. donovani.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Molecular Biology
Authors
, , ,