Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9186580 | Autonomic Neuroscience | 2005 | 11 Pages |
Abstract
Post-ganglionic sympathetic neurons express the p75 neurotrophin receptor (p75NTR) and brain-derived neurotrophic factor (BDNF), which together have been implicated in controlling the degree of efferent innervation of peripheral organs [Kohn, J., Aloyz, R.S., Toma, J.G., Haak-Frendscho, M., Miller, F.D. 1999. Functionally Antagonistic Interactions between the TrkA and p75 Neurotrophin Receptors Regulate Sympathetic Neuron Growth and Target Innervation. J. Neurosci. 19, 5393-5408]. To examine this concept further, we developed null mutant mice lacking both p75NTR and BDNF, and assessed whether the loss of this receptor-ligand interaction negatively impacts the degree of sympathetic innervation to various target tissues. Between postnatal days 10 and 14, hearts, urinary bladders, kidneys, and submandibular salivary glands were isolated from p75â/â/BDNFâ/â, p75â/â, BDNFâ/â, and wild type siblings. Sympathetic axons were visualized using tyrosine hydroxylase (TH) immunohistochemistry, and TH protein levels were quantified by immunoblotting. Concerning the sympathetic innervation of the heart, urinary bladder and kidneys, no differences were seen in single and double null mutant mice, as compared with their wild type siblings. Sympathetic innervation of the submandibular salivary gland was, however, increased in both p75â/â and p75â/â/BDNFâ/â mice over control mice. These results reveal that an absence of p75NTR and/or BDNF expression does not perturb the degree of sympathetic innervation of many peripheral tissues during postnatal development, and that a lack of p75NTR expression may actually enhance the density of these efferent fibers in other target tissues, such as the salivary glands.
Related Topics
Life Sciences
Neuroscience
Cellular and Molecular Neuroscience
Authors
Ali Jahed, Michael D. Kawaja,