Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9191849 | Experimental Neurology | 2005 | 12 Pages |
Abstract
Protein injection studies of the glial cell line derived neurotrophic factor (GDNF) family member Neurturin (NTN) have demonstrated neuroprotective effects on dopaminergic (DA) neurons, which are selectively lost during Parkinson's disease (PD). However, unlike GDNF, NTN has not previously been applied in PD models using an in vivo gene therapy approach. Difficulties with lentiviral gene delivery of wild type (wt) NTN led us to examine the role of the pre-pro-sequence, and to evaluate different NTN constructs in order to optimize gene therapy with NTN. Results from transfected cultured cells showed that wt NTN was poorly processed, and secreted as a pro-form. A similarly poor processing was found with a chimeric protein consisting of the pre-pro-part from GDNF and mature NTN. Moreover, we found that the biological activity of pro-NTN differs from mature NTN, as pro-NTN did not form a signaling complex with the tyrosine kinase receptor Ret and GFRα2 or GFRα1. Deletion of the pro-region resulted in significantly higher secretion of active NTN, which was further increased when substituting the wt NTN signal peptide with the immunoglobulin heavy-chain signal peptide (IgSP). The enhanced secretion of active mature NTN using the IgSP-NTN construct was reproduced in vivo in lentiviral-transduced rat striatal cells and, unlike wt NTN, enabled efficient neuroprotection of lesioned nigral DA neurons, similar to GDNF. An in vivo gene therapy approach with a modified NTN construct is therefore a possible treatment option for Parkinson's disease that should be further explored.
Related Topics
Life Sciences
Neuroscience
Neurology
Authors
Lone Fjord-Larsen, Jens Leander Johansen, Philip Kusk, Jens Tornøe, Mette Grønborg, Carl Rosenblad, Lars U. Wahlberg,