Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9197725 | NeuroImage | 2005 | 7 Pages |
Abstract
Activity of the prefrontal cortex (PFC) has been observed in previous block-design brain imaging studies of self-initiated movements. However, the meaning of these activations remained unclear. A functional MRI experiment was carried out, which utilized an epoch and an event-related analysis approach to the data. We hypothesized that event-related activity of the PFC would argue for a contribution to movement preparation. In contrast, epoch-, but not event-related activity pointed to tonic activations, probably reflecting enhanced attentional states or working memory processing. Twenty-one subjects were examined with 845 T2*-weighted images. During active phases, subjects were instructed to perform self-initiated movements of the right index finger with intertrial intervals of about 8 s. On single subject level, epoch- and event-related regressors were entered into a combined model, estimating the exclusive contribution of either regressor. For statistical inference on multisubject level, random effects analyses were performed. For the epoch regressor, activity within the right dorso- and ventrolateral prefrontal cortex, the bilateral insula, and the right inferior parietal lobe was observed. The event-related regressor detected activity within the right inferior parietal lobe, ventral from the activity found with the epoch regressor. The present results indicate a condition-, but not a movement-related function of the PFC in self-initiated movements. Furthermore, anatomically distinct regions within the inferior parietal cortex seem to be involved in condition-specific and movement-related processes. The observed condition-specific activations are suggested to reflect attentional or working memory processes, supervising task performance, rather than movement preparation or initiation.
Related Topics
Life Sciences
Neuroscience
Cognitive Neuroscience
Authors
Holger Wiese, Philipp Stude, Katharina Nebel, Michael Forsting, Armin de Greiff,