Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9198382 | NeuroImage | 2005 | 6 Pages |
Abstract
We have previously proposed a statistical method for extracting a plasma time-activity curve (pTAC) from dynamic PET images, named EPICA, for kinetic analysis of cerebral glucose metabolism. We assumed that the dynamic PET images consist of a blood-related component and a tissue-related component which are spatially independent in a statistical sense. The aim of this study is to investigate the utility of EPICA in imaging total distribution volume (DVt) and binding potential (BP) with Logan plots in a neuroreceptor mapping study. We applied EPICA to dynamic [11C]MPDX PET images in 25 subjects, including healthy subjects and patients with brain diseases, and validated the estimated pTACs. [11C]MPDX is a newly developed radiopharmaceutical for mapping cerebral adenosine A1 receptors. EPICA successfully extracted pTAC for all 25 subjects. Parametric images of DVts were estimated by applying Logan plots with the EPICA-estimated pTAC and then used to define a reference region. The BPs estimated using EPICA were evaluated in 18 subjects by ROI-based comparison with those obtained using the nonlinear least squares method (NLSM). The calculated BPs were identical to the estimates using NLSM in each subject. We conclude that EPICA is a promising technique that generates parametric images of DVt and BP in neuroreceptor mapping without requiring arterial blood sampling.
Keywords
Related Topics
Life Sciences
Neuroscience
Cognitive Neuroscience
Authors
Mika Naganawa, Yuichi Kimura, Tadashi Nariai, Kenji Ishii, Keiichi Oda, Yoshitsugu Manabe, Kunihiro Chihara, Kiichi Ishiwata,