Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9202382 | Pediatric Neurology | 2005 | 4 Pages |
Abstract
Cerebral infarction in infants is not uncommon, and it differs in many important ways from cerebral infarction in older children and adults. Computed tomography, ultrasound, and conventional and diffusion-weighted magnetic resonance imaging are useful for diagnosing cerebral infarction, but these imaging techniques cannot be used to measure cerebral blood flow and metabolic activity. Abnormality in those parameters seems to follow a different pattern and time course than those in older patients. In this study, the rapid changes in regional cerebral blood flow and metabolic rate of glucose were estimated by single-photon emission computed tomography and positron emission tomography during the acute and subacute phases of neonatal infarction. Subacute increases in blood flow and metabolic rate in the infarcted area of a term infant with multiple apneic episodes within 2 days after birth were observed, as well as acute increases in both in the infarcted area of a term infant with acute clonic seizures within 24 hours after birth. Follow-up studies at 4 months for the first infant and at 10 days for the second infant demonstrated that both the blood flow and metabolic rate in the infarcted region decreased. The results of this study should contribute to an understanding of the relationship between blood flow and metabolic rate changes after neonatal infarction as well as to improvement of diagnosis of neurologic impairments in neonates.
Related Topics
Life Sciences
Neuroscience
Developmental Neuroscience
Authors
Takashi MD, Sonoko MD, Yuka MD, Yoshihiro MD,