Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9203339 | Seminars in Pediatric Neurology | 2005 | 7 Pages |
Abstract
It has become clear in the past half decade that a number of forms of congenital muscular dystrophy are in fact congenital disorders of glycosylation. Genes for Walker Warburg syndrome, muscle-eye-brain disease, Fukuyama congenital muscular dystrophy, congenital muscular dystrophy 1C and 1D, and limb girdle muscular dystrophy 2I have been identified, and gene mutations resulting in these diseases all cause the underglycosylation of α dystroglycan with O-linked carbohydrates. Unlike congenital disorders of glycosylation involving the N-linked pathway, these O-linked disorders possess distinctive muscle, eye, and brain phenotypes. Studies using mice and patient tissues strongly suggest that underglycosylation of dystroglycan inhibits the binding extracellular matrix proteins, effectively divorcing this important cell adhesion molecule from its extracellular environment. Moreover, defects in dystroglycan alone can account for most, if not all, cellular pathology. Thus, these disorders are now collectively referred to as dystroglycanopathies.
Related Topics
Life Sciences
Neuroscience
Developmental Neuroscience
Authors
Paul T. Martin,