Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
929524 | Intelligence | 2009 | 7 Pages |
The neural efficiency hypothesis of intelligence suggests a more efficient use of the cortex (or even the brain) in brighter as compared to less intelligent individuals. This has been shown in a series of studies employing different neurophysiological measurement methods and a broad range of different cognitive task demands. However, most of the studies dealing with the brain–IQ relationship used parameters of absolute or relative brain activation such as the event-related (de-)synchronization of EEG alpha activity, allowing for interpretations in terms of more or less brain activation when individuals are confronted with cognitively demanding tasks. In order to investigate the neural efficiency hypothesis more thoroughly, we also used measures that inform us about functional connectivity between different brain areas (or functional coupling, respectively) when engaged in cognitive task performance. Analyses reveal evidence that higher intelligence is associated with a lower brain activation (or a lower ERD, respectively) and a stronger phase locking between short-distant regions of the frontal cortex.