Article ID Journal Published Year Pages File Type
9296409 Journal of Laboratory and Clinical Medicine 2005 14 Pages PDF
Abstract
Hypertension is a multifactorial disease involving complex interactions between genetic and environmental factors. Development of experimental models of hypertension allowed dissection and isolation of various factors associated with regulation of blood pressure, inheritance of hypertensive traits, and cellular responses to injury. The phenotype-driven approach is taking advantage of selective breeding of animals (primarily rats) that exhibit a desired phenotype, like the useful SHR. Genotype-driven models include transgenic techniques, in which mice are the most successful for selective deletion or overexpression of target genes. Notably, a combination of comparative genomics strategies and phenotypic correlates enhances the utility of hypertension models and their clinical relevance. Indeed, experimental models enabled development of targeted interventions aimed at decreasing not only blood pressure but also target organ injury. Continued utilization of experimental models simulating human hypertension, particularly those that combine other clinically relevant comorbidities like obesity or hypercholesterolemia, may afford development of effective strategies to address this common disease. Nevertheless, a cautious approach is mandatory when experimental findings in these models are extrapolated to human hypertension.
Related Topics
Health Sciences Medicine and Dentistry Medicine and Dentistry (General)
Authors
, , , ,