Article ID Journal Published Year Pages File Type
9335373 Reproductive BioMedicine Online 2005 8 Pages PDF
Abstract
The identification of components in cell-cell interactions is an important research goal in reproductive and developmental biology. Such interactions are critical to gamete development, fertilization, implantation and basic development. Several proteins involved with sperm-oocyte interaction and other developmentally important phenomena have been identified. However, these are obviously only a subset of the molecular components involved in such complex cell-cell interactions. One method that has been used to identify binding partners for particular molecular targets is the use of combinatorial libraries accessible on phage surfaces. For the most part, this technique has mainly been applied to screen specific target moieties. However, in some cases whole-cell screening has been attempted. This study describes the first report of screening intact, living mammalian gametes using a proprietary whole-cell combinatorial library binding and analysis protocol. Results from the first screening protocol of mouse spermatozoa strongly identified a putative sperm-binding ligand using proprietary bioinformatic analysis. This amino acid sequence (HIPRT) precisely corresponds with a previously characterized highly conserved protein-protein interaction site in the axin protein. This sequence is found within the binding site for a known sperm surface protein, glycogen synthase kinase-3. This result not only provides proof of the utility of this technique to identify cell surface ligands in mammalian gametes, but it also suggests a potential role for spermatozoa in facilitating developmental axis formation in mammalian embryos.
Related Topics
Health Sciences Medicine and Dentistry Obstetrics, Gynecology and Women's Health
Authors
, , ,