Article ID Journal Published Year Pages File Type
9406677 Behavioural Brain Research 2005 7 Pages PDF
Abstract
The medial septal nucleus regulates the physiology and emergent functions (e.g., memory formation) of the hippocampal formation. This nucleus is particularly rich in cholinergic receptors and is a putative target for the development of cholinomimetic cognitive enhancing drugs. Several studies have examined the direct effects of intraseptal cholinomimetic treatments and the results have been somewhat conflicting with both promnestic and amnestic effects. Several variables (e.g., age, task difficulty, timing of drug administration) may influence treatment outcome. The present study examined the effects of intraseptal infusion of the acetylcholinesterase inhibitor tacrine (0-25 μg/0.5 μl) on spatial memory performance. Tacrine was infused into the medial septum just prior to testing. Tacrine infusions did not significantly affect the number of correct choices in the first eight entries, or the number of correct choices until an error. This treatment did not alter the angle of arm entries, or impair the animals' ability to complete the task (enter all baited arms). However, tacrine produced a linear dose-dependent increase in errors, doubling (12.5 μg) and tripling (25.0 μg) the number of errors made before rats completed the task. The deficit demonstrates that activation of intraseptal cholinergic receptors can disrupt spatial memory performance. These findings are discussed with regards to septohippocampal-dependent memory processes and the development of therapeutic strategies in the treatment of age-related memory disorders.
Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , ,