Article ID Journal Published Year Pages File Type
9406690 Behavioural Brain Research 2005 15 Pages PDF
Abstract
Current evidence suggests that ginsenosides inhibit methamphetamine (MA)-induced changes in behavior, but the precise mechanisms that underlie this effect are yet to be determined. We examined the role of adenosine receptors in the ginsenoside-induced changes in hyperlocomotion and conditioned place preference (CPP) in mice that occurred in response to administration of MA (2 mg/kg, i.p. × 1 or 2 mg/kg, i.p. × 6). Changes in circling behavior paralleled changes in CPP in the presence of MA. Pre-treatment with ginsenosides (50 or 150 mg/kg, i.p.) attenuated the MA-induced circling behavior and CPP. This attenuation was reversed by the adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chrostyryl)xanthine (CSC; 0.5 and 1.0 mg/kg) in a dose-dependent manner, but neither the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 0.5 and 1.0 mg/kg) nor the A2B receptor antagonist alloxazine (ALX; 1.5 and 3.0 mg/kg) had any such effect. MA-induced increases in activator protein (AP)-1 DNA binding activity, Fos-related antigen immunoreactivity (FRA-IR), proenkephalin mRNA expression, and proenkephalin-like immunoreactivity were reduced consistently in the striatum of animals that were pretreated with ginsenosides. These reductions were largely prevented by CSC, but not by CPT or ALX. Our results suggest that the stimulation of A2A receptors by ginsenosides attenuates the changes in behavior and the increases in AP-1 DNA binding activity, FRA-IR, and proenkephalin gene expression in mouse striatum that are induced by MA.
Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , , , , , , , ,