Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9409612 | Brain Research Bulletin | 2005 | 7 Pages |
Abstract
In the present study, we investigated the role of phosphorylated calcium/calmodulin-dependent protein kinase-II (pCaMK-II) in nociceptive processing at the spinal and supraspinal levels in the substance P (SP)-induced mouse pain model. In the immunoblot assay, intrathecal (i.t.) injection with SP increased the pCaMK-II level in the spinal cord, and an immunohistochemical study showed that the increase of pCaMK-II immunoreactivity mainly occurred in the laminae I and II areas of the spinal dorsal horn. At the supraspinal level, pCaMK-II was increased in the hippocampus and hypothalamus by i.t. SP injection, and an increase of pCaMK-II immunoreactivity mainly occurred in the pyramidal cells and the stratum lucidum/radiatum layer of the CA3 region of hippocampus and paraventricular nucleus of the hypothalamus. Moreover, pCaMK-II immunoreactivity in the locus coelureus of the brain stem was also increased. The nociceptive behavior induced by SP administered either i.t. or intracerebroventricularly (i.c.v.) was attenuated by KN-93 (a CaMK-II inhibitor). Our results suggest that pCaMK-II located at both spinal cord and supraspinal levels is an important regulator during the nociceptive processes induced by SP administered i.t.
Keywords
Related Topics
Life Sciences
Neuroscience
Cellular and Molecular Neuroscience
Authors
Seong-Soo Choi, Young-Jun Seo, Min-Soo Kwon, Eon-Jeong Shim, Jin-Young Lee, Young-Ok Ham, Han-Kyu Lee, Hong-Won Suh,