Article ID Journal Published Year Pages File Type
9410653 Molecular Brain Research 2005 10 Pages PDF
Abstract
Idiopathic Parkinson's disease (PD) affects 2% of adults over 50 years of age. PD patients demonstrate a progressive loss of dopamine neurons in the substantia nigra pars compacta (SNpc). One model that recapitulates the pathology of PD is the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Here we show that exposure to an enriched environment (EE) (a combination of exercise, social interactions and learning) or exercise alone during adulthood, totally protects against MPTP-induced Parkinsonism. Furthermore, changes in mRNA expression would suggest that increases in glia-derived neurotrophic factors, coupled with a decrease of dopamine-related transporters (e.g. dopamine transporter, DAT; vesicular monoamine transporter, VMAT2), contribute to the observed neuroprotection of dopamine neurons in the nigrostriatal system following MPTP exposure. This non-pharmacological approach presents significant implications for the prevention and/or treatment of PD.
Related Topics
Life Sciences Neuroscience Cellular and Molecular Neuroscience
Authors
, , , ,