Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9410766 | Molecular Brain Research | 2005 | 9 Pages |
Abstract
Despite the success and popularity of microarrays as a high-throughput technology for gene-expression studies, its sensitivity is as yet fairly limited. We have successfully combined the use of PCR-Select cDNA subtraction and Affymetrix GeneChips (AGC) to identify differentially expressed gene markers. Total RNA (totRNA) from combined hippocampus and cerebellum tissues of 2-week-old rat pups maintained for 5 weeks on an n-3 fatty acid (FA) deficient diet supplied to dams was isolated, SMART-amplified, and used for PCR-Select subtraction versus an adequately fed control litter preparation. Subtracted and amplified ds-cDNA end products were fragmented, terminally labeled with biotin-ddUTP and hybridized with RN-U34A AGC. At least 10-fold more potential gene markers with log2(T/D) ⥠1.4 were found versus the traditional AGC technology when the same chip was tested using nonsubtracted targets. Of this set of markers, 30% were robustly validated by real-time relative RT-PCR (rtrRT-PCR) and grouped as “confirmed” markers while the remaining were ascribed as “latent” markers. An improved and universal protocol to provide a rapid assessment for gene profiling in biological specimens is indicated.
Keywords
Related Topics
Life Sciences
Neuroscience
Cellular and Molecular Neuroscience
Authors
E. Yakubov, P. Dinerman, F. Kuperstein, S. Saban, E. Yavin,