Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9416004 | Brain Research | 2005 | 8 Pages |
Abstract
Previous epilepsy-related gene screen identified a spontaneous recurrent seizure (SRS)-related gene named epilepsy-related gene (ERG1) that encodes N-ethylmaleimide-sensitive fusion protein (NSF). To explore whether spatial learning memory deficits are relevant to SRS and whether hippocampal NSF expression is altered by SRS, we used the kainic acid (KA)-induced epilepsy animal model. SRS was monitored for 3 weeks after injection of a single convulsive dose of KA. KA-treated rats with SRS, KA-treated rats without SRS, and saline-treated rats were then measured in Morris water maze. In this spatial learning task, KA-treated rats with SRS performed poorer compared to those without SRS and those treated with saline. During the subsequent probe trials, KA-treated rats with SRS spent less swim path and time in the target quadrant but more swim path and time in the opposite quadrant, and showed fewer platform crossings. Moreover, in situ hybridization and immunohistochemistry showed that both ERG1/NSF mRNA and NSF immunoreactive expression were down-regulated in the CA1 and dorsal dentate gyrus cells (dDGCs) of the hippocampus, and interestingly, tyrosine hydroxylase (TH) immunoreactive dopamine (DA) neurons were lost in ventral tegmental area (VTA) in the KA rats with SRS. These data demonstrate that SRS impairs spatial learning memory and suggest that the down-regulation of NSF expression pattern in the hippocampus and the loss of DA neurons in VTA might contribute to the spatial learning memory deficits induced by SRS.
Keywords
PBSNeural nitric oxide synthaseERG1SOD1SNARETLEVTAnNOSSRSAMPANSFDABBSAbovine serum albuminDisorder of the nervous systemSprague–Dawleykainic acidlong-term depressionspontaneous recurrent seizurelong-term potentiationLTPtyrosine hydroxylaseDopaminediaminobenzidinesuperoxide dismutase 1temporal lobe epilepsyEpilepsy: basic mechanismsphosphate buffer salineLTDventral tegmental areaN-ethylmaleimide-sensitive fusion protein
Related Topics
Life Sciences
Neuroscience
Neuroscience (General)
Authors
Shengming Yin, Zhuo Guan, Yiyuan Tang, Jie Zhao, Jaushyong Hong, Wanqin Zhang,