Article ID Journal Published Year Pages File Type
9416160 Brain Research 2005 10 Pages PDF
Abstract
We have previously shown that brain serotonin depletion by lesions of the median raphe nucleus (MRN) causes enhancement of phencyclidine-induced locomotor hyperactivity [34] [S. Kusljic, D.L. Copolov, M. van den Buuse, Differential role of serotonergic projections arising from the dorsal and median raphe nuclei in locomotor hyperactivity and prepulse inhibition, Neuropsychopharmacology 28 (2003) 2138-2147]. In this study, we extend our previous work by (1) comparing the effect of phencyclidine with that of another NMDA receptor antagonist, dizocilpine (MK-801); (2) investigate behavioral changes in more detail; (3) assess in detail the effect of raphe lesions on regional serotonin levels in the brain. Male Sprague-Dawley rats received microinjection of the serotonergic neurotoxin 5,7-dihydroxytryptamine into the MRN or dorsal raphe nucleus (DRN). The effects of treatment with saline, phencyclidine and MK-801 on locomotor activity were determined 2 weeks after the surgery. MRN lesions caused serotonin depletion in the dorsal hippocampus, whereas DRN lesions caused serotonin depletion in the frontal cortex, striatum and ventral hippocampus. There was a significant increase in phencyclidine-induced locomotor hyperactivity in the MRN-lesioned group compared to sham-operated controls. Further analysis of behavior showed that phencyclidine-induced hyperambulation, but not stereotypy or rearing, was significantly higher in MRN-lesioned rats compared to controls. In contrast, there was no significant effect of the lesions on the psychotomimetic effect of MK-801. These results indicate that a hyposerotonergic state induced by destruction of projections from the MRN leads to altered brain circuitry that is responsible for the regulation of phencyclidine-but not MK-801-induced locomotor hyperactivity. Thus, MRN projections may play an inhibitory role in mechanisms involved in symptoms of schizophrenia.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , ,