Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9416848 | Brain Research | 2005 | 11 Pages |
Abstract
Transient increases in extracellular K+ are observed under various conditions, including repetitive neuronal firing, anoxia, ischemia and hypoglycemic coma. We studied changes in cytoplasmic Ca2+ ([Ca2+]cyt) evoked by pulses of KCl in human neuroblastoma SH-SY5Y cells and rat dorsal root ganglia (DRG) neurons at 37 °C. A “pulse” of KCl evoked two transient increases in [Ca2+]cyt, one upon addition of KCl (K+on) and the other upon removal of KCl (K+off). The K+on transient has been described in many cell types and is initiated by the activation of voltage-dependent Ca2+ channels followed by Ca2+-evoked Ca2+ release from intracellular Ca2+ stores. The level of KCl necessary to evoke the K+off transient depends on the type of neuron, in SH-SY5Y cells it required 100 mM KCl, in most (but not all) of dorsal root ganglia neurons it could be detected with 100-200 mM KCl and in a very few dorsal root ganglia neurons it was detectable at 20-50 mM KCl. In SH-SY5Y cells, reduction of extracellular Ca2+ inhibited the K+on more strongly than the K+off and slowed the decay of K+off. Isoflurane (1 mM) reduced the K+on- but not the K+off-peak. However, isoflurane slowed the decay of K+off. The nonspecific cationic channel blocker La3+ (100 μM) had an effect similar to that of isoflurane. Treatment with thapsigargin (TG) at a concentration known to only deplete IP3-sensitive Ca2+ stores did not affect K+on or K+off, suggesting that Ca2+ release from the IP3-sensitive Ca2+ stores does not contribute to K+on and K+off transients and that the thapsigargin-sensitive Ca2+ ATPases do not contribute significantly to the rise or decay rates of these transients. These findings indicate that a pulse of extracellular K+ produces two distinct transient increases in [Ca2+]cyt.
Related Topics
Life Sciences
Neuroscience
Neuroscience (General)
Authors
Alexandra Corrales, José V. Montoya G., Jhon-Jairo Sutachan, Genoveve Cornillez-Ty, Zayra Garavito-Aguilar, Fang Xu, Thomas J.J. Blanck, Esperanza Recio-Pinto,