Article ID Journal Published Year Pages File Type
9423509 Current Opinion in Neurobiology 2005 9 Pages PDF
Abstract
Sensory cues in the environment can predict the availability of reward. Through experience, humans and animals learn these predictions and use them to guide their actions. For example, we can learn to discriminate chanterelles from ordinary champignons through experience. Assuming the development of a taste for the complex and lingering flavors of chanterelles, we therefore learn to value the same action - picking mushrooms - differentially depending upon the appearance of a mushroom. One major goal of cognitive neuroscience is to understand the neural mechanisms that underlie this sort of learning. Because the acquisition of rewards motivates much behavior, recent efforts have focused on describing the neural signals related to learning the value of stimuli and actions. Neurons in the basal ganglia, in midbrain dopamine areas, in frontal and parietal cortices and in other brain areas, all modulate their activity in relation to aspects of learning. By training monkeys on various behavioral tasks, recent studies have begun to characterize how neural signals represent distinct processes, such as the timing of events, motivation, absolute (objective) and relative (subjective) valuation, and the formation of associative links between stimuli and potential actions. In addition, a number of studies have either further characterized dopamine signals or sought to determine how such signaling might interact with target structures, such as the striatum and rhinal cortex, to underlie learning.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , ,