Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
9423790 | Current Opinion in Neurobiology | 2005 | 9 Pages |
Abstract
Because bacterial mechanosensitive channels have been cloned, purified, crystallized and subjected to a genetic, biochemical and physical scrutiny, they have become the current structural models of mechanosensation to atomic detail. The key observation, supported by recent mutagenesis studies, is that these channels receive stretch force directly through the lipid bilayer at the interface levels bearing highest tension. Indeed, simulations of mechanosensitive channels steered by strategically applied bilayer stretch forces show channel opening. Our understanding of the gating energetics and trajectory are continually being refined by the combination of approaches applied. In addition, new microbial mechanosensitive channels from the TRP family have been characterized in yeasts. Unified by fundamental biophysical principles of gating, mechanosensitive channels provide broad insight into protein-membrane interactions and the role of hydrophobic hydration in gating.
Related Topics
Life Sciences
Neuroscience
Neuroscience (General)
Authors
Andriy Anishkin, Ching Kung,