Article ID Journal Published Year Pages File Type
9424159 Journal of Neuroscience Methods 2005 8 Pages PDF
Abstract
A laser-diode forms the basis of a displacement sensitive homodyne interferometer suitable for measurements from poorly reflective surfaces. The compact and cost-effective interferometer utilizes the self-mixing effect when laser light reflected from a moving target re-enters the laser cavity and causes phase dependent changes of the lasing intensity. A piezo positioner was used to displace the interferometer with known frequency and amplitude as a basis for real-time calibration of the interferometer's sensitivity. The signal-processing algorithm is described that allows measurements in presence of high amplitude noise leading to variation of the interferometer's operating point. Measurements of sound-induced basilar membrane displacements were made in the intact cochleae of rodents by focusing the laser beam of the interferometer through the transparent round window membrane. The interferometer provides a viable means for making subnanometre mechanical measurements from structures in the inner ears of small mammals, where opening of the cochlea is not practicable.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , ,