Article ID Journal Published Year Pages File Type
9425586 Neuroscience 2005 8 Pages PDF
Abstract
17β-Estradiol (E2) is a major neuroregulator, exerting both genomic and non-genomic actions. E2 regulation of Slack (sequence like a calcium-activated potassium channel) potassium channels has not been identified in the CNS. We demonstrate E2-induced activation of Slack channels, which display a unitary conductance of about 60 pS, are inhibited by intracellular calcium, and are abundantly expressed in the nervous system. In lipid bilayers derived from rat cortical neuronal membranes, E2 increases Slack open probability and appears to decrease channel inactivation. Additionally, E2 binds to the Slack channel and activates outward currents in human embryonic kidney-293 cells that express Slack channels but not classical estrogen receptors (i.e. ERα or ERβ). Neither E2-induced activation nor the binding intensity of E2 to the Slack channel is blocked by tamoxifen, an ER antagonist/agonist. Thus, E2 activates a potassium channel, Slack, through a non-traditional membrane binding site, adding to known non-genomic mechanisms by which E2 exerts pharmacological and toxicological effects in the CNS.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , , , , ,