Article ID Journal Published Year Pages File Type
9429096 Neuroscience Letters 2005 5 Pages PDF
Abstract
Transplantation of myelin-forming cells can remyelinate axons, but little is known of the sodium channel organization of axons myelinated by donor cells. Sciatic nerve axons of female wild type mice were transected by a crush injury and Schwann cells (SCs) from green fluorescence protein (GFP)-expressing male mice were transplanted adjacent to the crush site. The male donor cells were identified by GFP fluorescence and fluorescence in situ hybridization (FISH) for Y chromosome. In nerves of GFP-expressing mice, GFP was observed in the axoplasm and in the cytoplasmic compartments of the Schwann cells, but not in the myelin. Following transplantation of GFP-SCs into crushed nerve of wild type mice, immuno-electron microscopic analysis indicated that GFP was observed in the cytoplasmic compartments of engrafted Schwann cells which formed myelin. Nodal and paranodal regions of the axons myelinated by the GFP-SCs were identified by Nav1.6 sodium channel and Caspr immunostaining, respectively. Nuclear identification of the Y chromosome by FISH confirmed the donor origin of the myelin-forming cells. These results indicate that engrafted GFP-SCs participate in myelination of regenerated peripheral nerve fibers and that Nav1.6 sodium channel, which is the dominant sodium channel at normal nodes, is reconstituted on the regenerated axons.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , ,