Article ID Journal Published Year Pages File Type
9429382 Neuroscience Letters 2005 6 Pages PDF
Abstract
The study showed that with the fast ascent to 2700 m the heart rate increased and the heart rate variability measures decreased. The correlation analysis indicated a close relationship between the EEG activity and the heart rate and heart rate variability. Furthermore it was shown for the first time that the beta ERS in the 14-18 Hz frequency range (post-movement beta ERS) was significantly reduced at high altitude. Very interesting also is the loss of correlation between EEG activity and cardiovascular measures during finger movement at high altitude. The suppressed post-movement beta ERS at the altitude of 2700 m may be interpreted as results of an increased cortical excitability level when compared with the reference altitude at 990 m above sea level.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , ,