Article ID Journal Published Year Pages File Type
9429470 Neuroscience Letters 2005 6 Pages PDF
Abstract
We have previously demonstrated that intracisternal orexin-A potently stimulated gastric acid secretion through the vagus nerve. Considering its stimulatory action on feeding, we hypothesized that orexin-A is a candidate mediator of cephalic phase gastric secretion. It has also been suggested that the stimulation of acid by central orexin-A may be mediated by orexin 1 receptor (OX1R) in the brain. In the present study, we tried to clarify whether endogenously released orexin-A in the brain indeed plays a physiological role in gastric secretion. To address the question, the effects of OX1R antagonist on gastric acid secretion was examined in rats. Intraperitoneal administration of SB334867, a specific OX1R antagonist, by itself did not change gastric acid secretion in pylorus-ligated conscious rats. Pretreatment with SB334867 in a dose of 10 mg/kg completely blocked the stimulated acid output by intracisternal orexin-A but not thyrotropin-releasing hormone, suggesting that SB334867 specifically blocked the action of orexin-A in the brain. 2-Deoxy-d-glucose (2-DG)-induced stimulation of gastric acid output was significantly blocked by pretreatment with intraperitoneal administration of SB334867. These results suggest that endogenously released orexin-A in the brain plays a vital role in central regulation of gastric secretion. Since 2-DG induces central glucoprivation as a hunger state, the present study furthermore supports the speculation that orexin-A may be an important molecule that triggers the cephalic phase gastric acid secretion.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , ,