Article ID Journal Published Year Pages File Type
9436513 Hearing Research 2005 11 Pages PDF
Abstract
Physiological studies of spatial hearing show that the spatial receptive fields of cortical neurons typically are narrow at near-threshold levels, broadening at moderate levels. The apparent loss of neuronal spatial selectivity at increasing sound levels conflicts with the accurate performance of human subjects localizing at moderate sound levels. In the present study, human sound localization was evaluated across a wide range of sensation levels, extending down to the detection threshold. Listeners reported whether they heard each target sound and, if the target was audible, turned their heads to face the apparent source direction. Head orientation was tracked electromagnetically. At near-threshold levels, the lateral (left/right) components of responses were highly variable and slightly biased towards the midline, and front vertical components consistently exhibited a strong bias towards the horizontal plane. Stimulus levels were specified relative to the detection threshold for a front-positioned source, so low-level rear targets often were inaudible. As the sound level increased, first lateral and then vertical localization neared asymptotic levels. The improvement of localization over a range of increasing levels, in which neural spatial receptive fields presumably are broadening, indicates that sound localization does not depend on narrow spatial receptive fields of cortical neurons.
Related Topics
Life Sciences Neuroscience Sensory Systems
Authors
, , ,